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Nonuniversality of invasion percolation in two-dimensional systems
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Employing highly efficient algorithms for simulating invasion percolation~IP! with trapping, we obtain
precise estimates for the fractal dimensions of the sample-spanning cluster, the backbone, and the minimal path
in a variety of two-dimensional lattices. The results indicate that these quantities are nonuniversal and vary
with the coordination numberZ of the lattices. In particular, while the fractal dimensionD f of the sample-
spanning cluster in lattices with lowZ has the generally accepted value of about 1.82, it crosses over to the
value of random percolation,D f.1.896, ifZ is large enough. Since optimal paths in strongly disordered media
and minimum spanning trees on random graphs are related to IP, the implication is that these problems do not
also possess universal scaling properties.
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Multiphase flow phenomena in porous media are relev
to many problems of great scientific and industrial imp
tance, including extraction of oil, gas, and geothermal ene
from underground reservoirs, food and soil sciences, pow
technology, and materials science@1#. Invasion percolation
~IP!, a model introduced@2# for describing the evolution o
the interface between an invading and a defending fluid
porous medium, has provided deep insight into such p
nomena. In addition, IP is relevant to a host of other pr
lems, including characterization of optimal paths and dom
walls in strongly disordered media@3,4#, minimum spanning
trees@5#, and even simulation of the Ising model at the cri
cal temperature@6#. Moreover, IP is one of the simples
parameter-free models which exhibits self-organized critic
ity @7#, another subject of current interest.

Two main variants of IP have been studied so far. In n
trapping IP~NTIP! the defending fluid is compressible an
the invading fluid can potentially enter any region on t
interface which is occupied by the defending fluid. In t
second and more common case, the trapping IP~TIP! which
is the subject of this paper, the defending fluid is incompre
ible and is trapped if a portion of it is surrounded by t
invading fluid. In addition to the compressibility, one mu
also take into account the ability of the fluids to wet t
internal surface of the medium@1#. In imbibition a wetting
fluid is drawn spontaneously into a porous medium, wh
during drainage a nonwetting fluid is pushed into the p
space. We model the porous medium as a network of p
or sites connected by throats or bonds which have sma
radii than the pores. In IP, the potential displacement eve
are ranked according to the capillary pressure threshold
must be exceeded before that event takes place. During
bibition, the invading fluid is drawn first into the smalle
constrictions, for which the capillary pressure is large a
negative, and it goes last into the widest pores. Displacem
events are therefore ranked in terms of the largest ope
that the invading fluid must travel through, since it is fro
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these larger capillaries or bonds that it is most difficult
displace the defender. Imbibition is therefore asite IP,
whereas drainage in which the invader has most difficu
with the smallest constrictions is abond IP.

Important differences arise@4,8–11# in the structure of the
invading fluid paths, depending on whether one consid
NTIP or TIP. The scaling properties of NTIP are believed
be consistent with those of random percolation~RP!. On the
other hand, up until now it has been assumed that the sca
properties of TIP in two dimensions~2D! are universal and
independent of the lattice type, and distinct from those of
The purpose of this paper is to report the results of exten
simulation of TIP in 2D in a variety of lattices which indicat
that, contrary to the common belief, the scaling properties
this model are all nonuniversal and lattice dependent. Si
the scaling properties of IP are related to those of optim
paths in random media and the geometry of minimum sp
ning trees on random graphs, the universality of the sca
properties of these phenomena, which has been claime
the past@3–5#, is also questioned.

Since the differences between values of various sca
exponents of TIP and RP appear to be small, it is critica
be able to simulate very large lattices in order to establish
universality classes of TIP models. We have recently dev
oped@11# a highly efficient algorithm for simulating TIP in
which the simulation time grows asO@N ln(N)#, whereN is
the number of sites in the lattice, which enables us to sim
late very large lattices for measuring the scaling propertie
TIP models with very high accuracy. Briefly, in this algo
rithm one looks for the trapped regions by searching
neighbors of each newly invaded site. If trapping is possib
then several simultaneous breadth first ‘‘forest-fire’’ searc
are used to update the cluster labeling as necessary@8#,
which restricts the changes to the most local region possi
Since during an invasion each site can be invaded or trap
at most once, this part of the algorithm scales asO(N). The
search is done for cluster volumes rather than perimeters
©2002 The American Physical Society01-1
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TABLE I. Values of the three fractal dimensions on various 2D lattices. All the results were obtained
L3L lattices, unless specified otherwise. Numbers in parentheses indicate the estimated error in the la

D f Dbb Dmin

Site NTIP 1.8959~1! 1.6432~8! 1.1307~4!

Site TIP
Hexagonal 1.831~6! 1.21~2! 1.218~6!

Square 1.825~4! 1.22~2! 1.214~1!

Triangular 1.890~2! 1.616~2! 1.132~7!

Triangular (L32L) 1.892~2! 1.617~2! 1.137~3!

Star 1.896~1! 1.642~2! 1.136~3!

Star (L32L) 1.895~2! 1.642~4! 1.133~3!

Bond TIP
Hexagonal 1.831~6! 1.218~6!

Square 1.822~8! 1.214~2!

Triangular 1.823~2! 1.215~1!

Star 1.895~7! 1.221~3!
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incorporates local checking to minimize cluster searchi
and is thus equally effective in 3D.

We also store the sites~bonds! on the fluid-fluid interface
in a list, sorted according to the capillary pressure thresh
needed to invade them. This list is implemented via a b
anced binary search tree, so that insertion and deletion
erations on the list can be performed in log(n) time, wheren
is the list size. Sites~bonds! that are designated trapped usi
the above described procedures are removed from the i
sion list. Each site is added and removed from the interf
list at most once, limiting the cost of this part of the alg
rithm to O@N log(n)#. Thus the execution time forN sites
~bonds! is dominated~for largeN! by list manipulation and
scalesat mostasO@N ln(N)#.

We have also used a different optimized algorithm@11# to
identify the minimal path length, the sites comprising bo
the elastic backbone@12#, i.e., the set of the sites that lie o
the union of all the shortest paths between two widely se
rated points, and the usual transport backbone, so tha
backbone search and computations do not affect the ov
execution time of the algorithm. Although numerous alg
rithms have been proposed in the past@12,13#, as we have
discussed elsewhere@11#, our algorithm appears to be mor
efficient than the previous methods. Briefly, the algorith
consists of four steps.~i! Using a breadth-first search algo
rithm, we label each site in the cluster with its ‘‘cluster di
tance’’ from the inlet face, and then use this information
burn backwards from the outlet face and identify the ela
backbone. We also construct the ‘‘branch points list’’—a l
of all the cluster sites that are adjacent to the elastic ba
bone but are not part of it. The branch points list should
ordered with the sites closest to the inlet face listed first.~ii !
The search stops if the branch points list is empty. Otherw
a depth-first search from the last site in the branch points
is performed, flagging all the sites that are visited. During
search, unexplored branch points are added to the bra
points list, while another list tracks the sites that have b
flagged as visited. We then carry out an optimization dur
03510
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the depth-first search: If there are multiple branches from
single site, the site labeled as the closest to the inlet fac
always the first to be explored.~iii ! The depth-first search
terminates when one of two conditions are satisfied:~1! The
search contacts the backbone again at a different site f
where it started, in which case the sites in the visited-sites
are flagged as backbone sites, or~2! it retreats back to its
starting site, at which point there will be no sites left in th
visited-sites list.~iv! The algorithm continues at step~ii !.

We carried out extensive simulations using the hexago
square, triangular, and star lattices, thus spanning a rang
coordination numbersZ ranging fromZ53 for the hexago-
nal lattice toZ58 for the star lattice, which is constructed b
adding diagonal bonds to the square lattice. We simula
both site and bond TIP usingL3L lattices with reflecting
boundary conditions on the edges. In the case of the trian
lar and star lattices, we also usedL32L lattices and mea-
sured the cluster properties within the centralL3L region
~see below!. Lattice sizes ranging fromL516 to L58192
were used. The number of realizations varied betwee
3106 for L516 to 3000 forL58192, representing the mos
extensive TIP simulations that we are aware of.

Consider, for example, the fractal dimensionD f of the
sample-spanning cluster. If we define a local fractal dim
sions D f(M )[d ln M/d ln L ~where M is the mass of the
cluster!, then according to finite-size scaling~FSS!
D f(M ) converges to its asymptotic~large M! value as
uD f2D f(M )u;M 2a, wherea is a correction-to-scaling ex
ponent. Combining the definition ofD f(M ) with the FSS
equation yields a differential equation which has an anal
cal solution@11#:

c11D fM
a5c2LaD f , ~1!

wherec1 andc2 are two constants. We thus fit the data to E
~1! to estimate bothD f and a simultaneously. Equations
similar to Eq.~1! are also used for estimatingDbb andDmin
1-2
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~and the correspondingas!, the fractal dimensions of the
backbone and the minimal paths, respectively.

Table I presents the results for both site and bond TIP
the four lattices that we used. The estimated values ofD f in
the hexagonal and square lattices in both site and bond
are completely consistent with each other and with the g
erally accepted value@11#, D f.1.82560.004, obtained in
the square lattice. For bond TIP the estimatedD f in the tri-
angular lattice is also consistent with this value. Howev
for site TIP, the value ofD f in the triangular lattice jumps to
about 1.89060.002, just outsideD f591/48.1.8958 for RP.
To obtain a more accurate estimate, we usedL32L triangu-
lar lattices and collected statistics in the middleL3L part in
order to eliminate boundary effects. We obtainedD f
.1.89260.002, which is again slightly outside the value f
RP. Although this estimate is extremely accurate, we can
completely rule out the possibility that with even larger la
tices one would obtain a value ofD f which is completely
consistent with that of RP. However, in the case of the s
lattice, both site and bond TIP have a value ofD f that is
completely consistent with RP.

The same trends are seen in the value of the backb
fractal dimensionDbb , namely, in the low-coordinated lat
tices Dbb takes on the value that we recently reported@11#
for the square lattice, but as the coordination number of
lattice increases, so also doesDbb . The estimate for the sta
lattice is completely consistent with that of RP~Ref. @11# and
Grassberger@13#!, Dbb.1.643260.0008. However, our re
sults for the triangular lattice consistently exhibit small b
systematic and significant deviations from that of RP;
Table I. To show the quality of the data, we present them
Fig. 1, where we usedDbb.1.617, and the confidence e
lipses@14# for the estimated exponents. Clearly,M /L1.617 is
converging to a constant value, while the confidence ellip
provide error estimates that are so small that rule out
significantly largerDbb . The behavior ofDbb , which is con-
sistent with that ofD f , might be indicative of one of the two
scenarios.~1! There is in fact adistinct intermediate case
between the low-and high-coordinated lattices represe
by the triangular lattice. The distinct value ofDbb in the
triangular lattice, as well as its estimatedDmin discussed be-
low, strongly support this scenario.~2! Alternatively, there
may be only two distinct sets of fractal dimensions, one e
for the low- and high-coordinated lattices, which are se
rated by a critical coordination number 6<Zc,8. If so, the
convergence of the results for the triangular lattice to th
of RP should be very slow; one must use much larger latt
in order to obtain the true asymptotic values. Although o
results do not provide any significant support for this s
nario, we cannot completely rule out this possibility.

Finally, the results forDmin for site TIP are completely
consistent with the other two sets of results, namely, in lo
coordinated lattices, the value ofDmin are consistent with the
previous estimate@11# reported for the square lattice, at th
highest coordination number, it crosses over to that of
~Grassberger@13#!, Dmin.1.130760.0004, with the value
for the triangular lattice being in between the two cas
However, with bond TIP, all the estimates ofDmin are con-
sistent with the previous value for the square lattice@11#.
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Note that bond TIP has been claimed@3,4# to be in the uni-
versality of optimal paths in the limit of strong disorder@3#,
and as such it is expected to be different from site TIP.
the results together leave very little, if any, doubt that t
scaling properties of TIP in 2D are lattice dependent, a
hence nonuniversal. They also indicate that, contrary to c
mon belief, site and bond TIP have quite different scali
properties.

Trapping IP is a dynamical process. It is already kno
@15# that diffusion-limited aggregation, another dynamic
process, is also characterized by a lattice dependent fra
dimension. One may then ask whether such nonuniversa
is a generic feature of some dynamical processes, and i
what distinguishes those with universal properties from
ones with nonuniversal properties. In addition, since the s
ing properties of IP are related to those of optimal paths
strongly disordered media@3,4# and minimum spanning tree
on random graphs@5#, contrary to the common belief, thes
problems must also have nonuniversal properties. It is p
sible that all of these phenomena have universal sca

FIG. 1. ~a! The behavior of the massM of the backbone in the
triangular lattice in site TIP versus its linear sizeL, where Dbb

.1.617.~b! Confidence ellipses for the finite-size scaling expon
a and the fractal dimensionDbb . The solid~dashed! curve shows
68% ~90%! confidence level.
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properties in the continuum limit which, however, have n
been computed.

M.A.K. is grateful to the Australian Research Council f
financial support. Work at USC was supported in part by
J

ev
.

ev
.

03510
t

e

Petroleum Research Fund, administered by the Ameri
Chemical Society. We thank the ANU Supercomputing F
cility and the High Performance Computing Facility at th
University of Queensland for generous allocations of co
puter time.
v.

M.

n-
@1# M. Sahimi, Rev. Mod. Phys.65, 1393~1993!; Flow and Trans-
port in Porous Media and Fractured Rock~VCH, Weinheim,
Germany, 1995!.

@2# R. Chandler, J. Koplik, K. Lerman, and J. F. Willemsen,
Fluid Mech.119, 249 ~1982!; D. Wilkinson and J. Willemsen,
J. Phys. A16, 3365~1983!.

@3# M. Cieplak, A. Maritan, and J. R. Banavar, Phys. Rev. Lett.72,
2320 ~1994!; 76, 3754~1996!.

@4# M. Porto, S. Havlin, S. Schwarzer, and A. Bunde, Phys. R
Lett. 79, 4060~1997!; M. Porto, A. Bunde, S. Havlin, and H
E. Roman, Phys. Rev. E56, 1667~1997!.

@5# R. Dobrin and P. M. Duxbury, Phys. Rev. Lett.86, 5076
~2001!.

@6# J. Machta, Y. S. Choi, A. Lucke, and T. Schweizer, Phys. R
Lett. 75, 2792 ~1995!; G. Franzese, V. Cataudella, and A
Coniglio, Phys. Rev. E57, 88 ~1998!.

@7# C. P. Stark, Nature~London! 352, 423 ~1991!; R. Cafiero, A.
Gabrielli, M. Marsili, and L. Pietronero, Phys. Rev. E54, 1406
~1996!.

@8# F. Babalievski, Int. J. Mod. Phys. C9, 43 ~1998!.
.

.

.

@9# A.-L. Barabási, Phys. Rev. Lett. 76, 3750 ~1996!; S.
Schwarzer, S. Havlin, and A. Bunde, Phys. Rev. E59, 3262
~1999!, and references therein.

@10# M. Sahimi, M. Hashemi, and J. Ghassemzadeh, Physica A260,
231 ~1998!; E. Aker, K. J. Maaløy, and A. Hansen, Phys. Re
Lett. 84, 4589~2000!.

@11# A. P. Sheppard, M. A. Knackstedt, W. V. Pinczewski, and
Sahimi, J. Phys. A32, L521 ~1999!; M. A. Knackstedt, M.
Sahimi, and A. P. Sheppard, Phys. Rev. E61, 4920~2000!.

@12# H. J. Herrmann, D. C. Hong, and H. E. Stanley, J. Phys. A17,
L261 ~1984!.

@13# C. Liem and N. Jan, J. Phys. A21, L243 ~1988!; M. D. Rintoul
and H. Nakanishi,ibid. 27, 5445 ~1994!; P. Grassberger,
Physica A262, 251 ~1999!; J. Phys. A25, 5477, 5867~1992!;
C. Moukarzel, Int. J. Mod. Phys. C9, 887 ~1998!.

@14# W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Fla
nery, Numerical Recipes, 2nd ed. ~Cambridge University
Press, Cambridge, England 1992!, Chap. 15.

@15# L. A. Turkevich and H. Scher, Phys. Rev. Lett.55, 1026
~1985!; Phys. Rev. A33, 786 ~1986!.
1-4


